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Cosmological Models with Variable “Constants”

José Antonio Belinchón1
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The behavior of the “constants,” G, c, ", a, e, mi , and L, considering them as
variable, in the framework of a flat cosmological model with FRW symmetries
described by a bulk viscous fluid and considering mechanisms of adiabatic matter
creation are investigated. Two cases are studied; one with radiation predominance
and another of matter predominance. It is found that with the solution obtained our
model verifies these basic principles: Lorentz invariance and general covariance,
Mach, Equivalence and causality. Finally, to emphasize that the envisaged models
are free from the main problem: Planck’s, horizon and entropy. With regard to
that model with matter predominance it is seen that mechanisms of creation of
matter cannot be considered since if these are taken into account the temperature
would increase instead of remaining constant while the universe expands.

1. INTRODUCTION

In a recent paper [1] the behavior of the “constants” G, c, and L was
investigated within a model described by a bulk viscous fluid, and taking
into account mechanisms of matter creation, to solve the entropy problem.
Upon considering the constant c as a function dependent on time t, the
condition that the radiation constant a should be constant in the same way
that Boltzmann’s constant kB was imposed. With this supposition the following
is obtained: Planck’s constant " should behave as " } c21. In this paper this
point is taken up once more but without similar hypothesis, i.e., Boltzmann’s
constant kB is the only constant considered real. Therefore, we suppose that
all the “constants” G, c, ", a, e, mi , and L are variable, without making any
previous hypothesis about their behavior or verifying any equality in particu-
lar. Calculations are made within the framework described above, regarding
their behavior together with the rest of the quantities which characterize the
model: f; r; rm ; u; S; s; j; and n where, respectively, they represent the radius
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of the universe; energy density; matter density; temperature; entropy; entropy
density; viscosity coefficient; and particle number density.

Once all these quantities are calculated, two concrete solutions are stud-
ied: one that it would describe a universe with radiation predominance and
another with matter predominance, simplifying both solutions to the case of
noncreation of matter, i.e., b 5 0. It is found, for example, that with these
solutions, it is always verified that G/c2 (general covariance) stays constant
in both cases, independently of the value of b. The expression r 5 au4 is
recovered for energy density. All energies are preserved, but not the moment
in the case of matter predominance, while in the case of radiation predomi-
nance, the energy follows the law E } t21/2 while the moment is constant.
The fine structure constant a in both cases, continues being a real constant
in spite of the fact that all the constants that define it vary. The models
described here verify the following basic principles: as already indicated
general covariance; it is also shown that the principle of Lorentz invariance
is verified, Mach, Equivalence; and causality. Both models lack the designated
horizon problem since the relationship: f 5 ct is always verified. With the
solutions obtained, it is seen that the model lacks the designated problem of
Planck in the same way as that of entropy.

The paper is organized as follows: In the second section the governing
equations of our model are shown and considerations on the dimensional
method followed, are made. In the third section, use is made of the D.A. (Pi
theorem) to obtain a solution to the principal quantities that appears in the
model. Finally, in the fourth section presentation is made of two particular
cases of the obtained solutions together with some conclusions.

2. THE MODEL

For a flat universe k 5 0 with FRW symmetries, i.e., homogeneity and
isotropy were assumed and therefore there will be no solely temporary spatial
variations of “constants” G, c, and L. It is also supposed that our fluid is
bulk viscous (second viscosity) and mechanisms of creation of matter are
considered. With these suppositions the equations that govern the model are
as follows:

2
f 9

f
1

( f 8)2

f 2 5 2
8pG(t)

c2(t)
(p 1 pc) 1 c2(t)L(t) (1)

3
( f 8)2

f 2 5
8pG(t)

c2(t)
r 1 c2(t)L(t) (2)

n8 1 3nH 2 c 5 0 (3)

where n measures the particles number density, c is the function that measures



Cosmological Models with Variable “Constants” 1671

the matter creation, H 5 f 8/f represents the Hubble parameter ( f is the scale
factor that appears in the metrics), p is the thermostatic pressure, r is energy
density, and pc is the pressure that generates the matter creation.

The creation pressure pc depends on the function c. For adiabatic matter
creation this pressure takes the following form [2]:

pc 5 2Fr 1 p
3nH

cG (4)

The state equation used is the known expression

p 5 vr (5)

where v 5 const. w P [0, 1] physically realistic equations, thus the energy-
momentum tensor Tij verifies the energy conditions.

It is necessary to know the exact form of the function c, which is
determined from a more fundamental theory that involves quantum processes.
It is assumed that this function follows the law:

c 5 3bnH (6)

here we are following to Lima et al. [2] (for other treatment [3] while
Prigogine et al. [4] follows this other law c 5 kH 2) where b is a dimensionless
constant (if b 5 0 then there is no matter creation since c 5 0), presumably
given by models of particles physics of matter creation.

The conservation principle brings us to the following expression:

r8 1 3(v 1 1)r
f 8
f

5 (v 1 1)r
c
n

(7)

Integrating the equation (7) the following relationship between energy
density and the radius of the universe is obtained and even more important
the constant of integration necessary for our subsequent calculations:

r 5 Av,b f 23(v11)(12b) (8)

where Av,b is the constant of integration that depends on the state equation
that is considered, i.e., of the constant v and of the constant b that measures
the matter creation.

The effect of the bulk viscosity in the equations is shown replacing p
by p 2 3jH where j follow the law j 5 j0rg (see [5], [6], and [3]). This
last state equation, in our opinion, does not verify the homogeneity principle
for this reason it is modified by

j 5 kgrg (9)

where the constant kg causes this equation to be dimensionally homogeneous
for any value of g.
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The dimensional analysis followed needs to make the following distinc-
tions: it is necessary to know beforehand the set of fundamental quantities
together with that of unavoidable constants (designated as governing parame-
ters in the nomenclature of Barenblatt). In this case, the only fundamental
quantity that appears in the model is the cosmic time t as can be easily
deduced from the homogeneity and isotropy supposed for the model. The
unavoidable constants of the model are the constant of integration Av,b that
depends on the state equation v and of the mechanisms of matter creation
b and the constant kg that controls the influence of the viscosity in the model.

In a previous work [7] the dimensional base was calculated for this type
of model, being this B 5 {L, M, T, u} where u represents the dimension of
the temperature. The dimensional equation of each one of the governing
parameters are:

[t] 5 T [Av,b] 5 L3(v11)(12b)21MT 22

[kg] 5 Lg21M 12gT 2g21

All the derived quantities or governed parameters in the nomenclature of
Barenblatt will be calculated in the function of these quantities (the governing
parameters), that is to say, in function of the cosmic time t and of the two
unavoidable constants kg and Av,b with respect to the dimensional base B 5
{L, M, T, u}.

3. SOLUTIONS THROUGH D.A.

Calculation will be made through dimensional analysis D.A., i.e.,
applying the Pi Theorem, the variation of G(t) in function of t, the speed of
light c(t), the Planck’s constant "(t), the radiation constant a, the charge of
the electron e(t), the mass of an elementary particle mi , the variation of the
cosmological “constant” L(t), the energy density r(t), the matter density
rm(t), the radius of the universe f (t), the temperature u(t), the entropy S(t)
and the entropy density s(t), the viscosity coefficient j(t), and, finally, the
particle number density n(t) } f 23.

The dimensional method brings us to (see [7] and [8]).

3.1. Calculation of G(t)

As indicated above, will be accomplished calculation of the variation
of G applying the Pi theorem. The quantities considered are: G 5 G(t, kg,
Av,b), with respect to the dimensional base B 5 {L, M, T, u}. We know that
[G] 5 L3M 21T 22
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G t kg Av

L 3 0 g 2 1 3(v 1 1)(1 2 b) 21
M 21 0 1 2 g 1
T 22 1 2g 2 1 22

we obtain a single monomial that leads to the following expression for G

G } A
2

3(v11)(12b)
v,b k

213(v11)(12b)
3(v11)(12b)(g21)
g t

242F 213(v11)(12b)
3(v11)(12b)(g21)G (10)

3.2. Calculation of c(t)

c(t) 5 c(t, kg, Av,b) where [c] 5 LT 21 ⇒

c(t) } A
1

3(v11)(12b)
v,b k

1
3(v11)(12b)(g21)
g t

212F 1
3(v11)(12b)(g21)G (11)

3.3. Calculation of Planck’s Constant "(t)

" 5 "(t, kg, Av,b) where the dimensional equation is: ["] 5 L2MT 21 ⇒

"(t) } A
1

(v11)(12b)
v,b k

12(v11)(12b)
(v11)(12b)(g21)
g t

(v11)(12b)[11(n21)]21
(v11)(12b)(g21) (12)

3.4. Radiation Constant a(t)

a 5 a(t, kg, Av,b, kB) where [a] 5 L21MT 22u24 ⇒

k24
B a(t) } A

24
(v11)(12b)
v,b k

2413(v11)(12b)
(v11)(12b)(g21)
g t

423(v11)(12b)
(v11)(12b)(g21) (13)

3.5. Charge of the Electron e(t)

e 5 e(t, kg, Av,b, e0) where [e2e21
0 ] 5 L3MT 22 ⇒

e2(t)e21
0 } A

4
3(v11)(12b)
v,b k

423(v11)(12b)
3(v11)(12b)(g21)
g t

2413(v11)(12b)
3(v11)(12b)(g21) (14)

3.6. Mass of an Elementary Particle mi (t)

m 5 m(t, kg, Av,b) where [m] 5 M ⇒

m(t) } A
1

3(v11)(12b)
v,b k

123(v11)(12b)
3(v11)(12b)(g21)
g t

22F 123(v11)(12b)
3(v11)(12b)(g21)G (15)

3.7. Cosmological Constant L(t)

L 5 L(t, kg, Av,b) where [L] 5 L22 ⇒

L(t) } A
22

3(v11)(12b)
v,b k

22
3(v11)(12b)(g21)
g t

2
3(v11)(12b)(g21) (16)

3.8. Calculation of Energy Density r(t)

r 5 r(t, kg, Av,b) with respect to the dimensional base B, where [r] 5
L21MT 22
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r } k
1

12g
g t

1
g21 (17)

it is observed that this relationship shows that energy density does not depend
either on the state equation v or on the mechanisms on creation of matter,
i.e., it does not depend on the constant Av,b solely on the viscosity of the fluid.

3.9. Matter Density rm(t)

rm 5 rm(t, kg, Av,b) where [rm] 5 ML23 ⇒

rm(t) } A
22

3(v11)(12b)
v,b k

2223(v11)(12b)
3(v11)(12b)(g21)
g t

22F2223(v11)(12b)
3(v11)(12b)(g21)G (18)

3.10. Calculation of the Radius of the Universe f (t)

f 5 f (t, kg, Av,b) where [ f ] 5 L ⇒

f } A
1

3(v11)(12b)
v,b k

1
3(v11)(12b)(g21)
g t

21
3(v11)(12b)(g21) (19)

It can be observed that

q 5 2
f 9f

( f 8)2 5 21 2 3(v 1 1)(1 2 b)(g 2 1)

H 5
f 8
f

5 21 1
3(v 1 1)(1 2 b)(g 2 1)2 1

t

3.11. Calculation of the Temperature u(t)

u 5 u(t, kg, Av,b, kB) where kB is the Bolztmann constant: [u] 5 u and
[kBu] 5 L2MT 22 ⇒

kBu } A
1

(v11)(12b)
v,b k

12(v11)(12b)
(v11)(12b)(g21)
g t

2F 12(v11)(12b)
(v11)(12b)(g21)G (20)

3.12. Calculation of the Entropy S(t)

S 5 s(t, kg, Av,b, a) where a is the radiation constant. [S] 5 L2MT 22u21

S } A
1

(v11)(12b)
v,b k

12
3
4
(v11)(12b)

(v11)(12b)(g21)
g t

23
12

3
4
(v11)(12b)

(v11)(12b)(g21)4a
1
4 (21)

3.13. Calculation of the Entropy Density s(t)

s 5 s(t, kg, Av,b, a) where a is the radiation constant. [s] 5 L21MT 22u21
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s } A0
v,b k

3
4(g21)
g t

2F 3
4(g21)Ga

1
4 (22)

3.14. Calculation of the Viscosity Coefficient j(t)

j 5 j(t, kg, Av,b) where [j] 5 L21MT 21

j } k
1

12g
g t

2g
g21 (23)

3.15. Particle Number Density n(t)

n 5 n(t, kg, Av,b) where [n] 5 L23 obtaining

n(t) } A
21

(v11)(12b)
v,b k

21
(v11)(12b)(g21)
g t

1
(v11)(12b)(g21) (24)

4. DIFFERENT CASES

All the following cases can be calculated without difficulty. But as
indicated in the first section, attention is centred only on those models that
follow the law j 5 kgr1/2, i.e., g 5 (1/2), which corresponds to models that
are topologically equivalent to the classic FRW [9]. Two models with g 5
(1/2) are studied: one with v 5 1/3 which corresponds to a universe with
radiation predominance and another with v 5 0 corresponding to a universe
with matter predominance.

4.1. Model with Radiation Predominance g 5 1/2 and v 5 1/3

G } A
1

2(12b)
v k

222
1

(12b)
g t

221
1

(12b)

c } A
1

4(12b)
v k

21
2(12b)
g t

211
1

2(12b)

" } A
3

4(12b)
v k

22
3

2(12b)
g t

112b
2(12b)

k21/4
B a } A

23
(12b)
v k

6b
12b
g t

6b
b21

e2e21
0 } A

1
(12b)
v k

22b
12b
g t

2b
(12b)

m } A
21

2(12b)
v k

22
1

2(12b)
g t

1
2(12b)

L } A
2

1
2(12b)

v k
1

(12b)
g t

2
1

(12b)

With these results it is proven that the relationship G/c2 (general covari-
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ance) remains constant without the need of imposing it as other authors do
[10] and [11].

G
c2 5

t
221

1
(12b)

t
221

1
(12b)

5 const. (25)

Likewise, it is observed that the fine structure constant remains constant
independently of the value of b

a 5
e2

e0c"
5

t
2b

(12b)

t
211

1
2(12b) t

112b
2(12b)

5 const.

that is to say, in this model a possible variation of the fine structure constant
a cannot be explained [12]. In the way in which the variation of the charge
of the electron has been calculated it cannot be discerned whether e0 is
constant or not. Let us suppose that e0 5 const. (for an opposite point of

view [13] and the appendix) therefore e } t
b

(12b) and from the relationship

c2 5
1

e0m0
is obtained m0 } c22 } t

22
1

(12b).

If b 5 0 becomes (there is no matter creation) the following results
are found:

G } t21, c } t21/2, " } t1/2, a 5 const.

e2e21
0 5 const., m0 } t, mi } t1/2, L } t21

The result of G } t21 is very well-known in the literature. The value of c }
t21/2 also has been obtained by Troiskii [14] and Barrow [15] (in very different
contexts). A similar result to " } t1/2 can be found in [16], [17], [18], and
[19] whereas for a contrary point of view see [20]. The constancy or not of
the charge of the electron and of the fine structure constant have been discussed
(amongst others) by [21]. e2e0

21 5 const. has been obtained in particular if it
is assumed that e0 5 const. then it is determined that e 5 const. and m0 }
t, with respect to G } t21 and mi } t1/2. A similar result to that is obtained
by Hoyle and Narlikar [22] and Canuto et al. [23]. A study on the implications
of the variation of the masses can be found in Mansfield et al. [24].

With respect to rest of the quantities, the same behavior is obtained as
that of Lima et al. [2], except for the temperature u and the particle number
density n.

r } k2
gt22, r } t22

kBu } A
3

4(12b)
v k

22
3

2(12b)
g t

221
3

2(12b)
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f } A
1

4(12b)
v k

2
1

2(12b)
g t

1
2(12b)

a
21
4 S } A

3
4(12b)
v k

2
3b

2(12b)
g t

3b
2(12b)

a
21
4 s } A 0

vk
3
2
g t

2
3
2

j } k2
nt21

n } A
23

4(12b)
v k

3
2(12b)
g t

23
2(12b)

In the results, the temperature u depends explicitly on b on such a way
that b , 1–4 so that the temperature of our universe does not increase. On the
contrary it cools down as it expands. With this value of b, q . 1–2 is obtained.
The same happens with the value obtained for n. The result depends explicitly
on the parameter b. The rest of the quantities coincide with those obtained
by Lima et al. except, obviously, for the quantity j since their model describes
a perfect fluid. With these solutions, our model does not have the horizon
problem posed by classic FRW since ct 5 f.

With respect to the thermodynamic behavior, the matter creation formula-
tion considered here is a clear consequence of the nonequilibrium thermody-
namic in the presence of a gravitational field. We see that the b parameter
works in the opposite sense of the expansion, that is, reducing the cooling
rate with respect to the case where there is no matter creation. A very
meaningful result is the fact that the spectrum of this radiation cannot be
distinguished from the usual blackbody spectrum at the present epoch (see
[2]). Therefore, models with adiabatic matter creation can be compatible with
the isotropy currently observed in the spectral distribution of the background
radiation. At the same time, it can be observed that the obtained model is
clearly irreversible (the classic FRW is reversible).

With these results the following law for the energy density

r 5 au4

is recovered since the radiation constant a also depends on b and obviously
the law rf 4(12b) 5 const. is verified. It should be pointed out, furthermore,
that the variation of the entropy is due to the variation of the radiation constant
a. The energy follows the law

E 5 "n } t
2114b
2(12b), E 5 mic2 } t

2114b
2(12b)

since E 5 kBu.
It should also be mentioned that all the important quantities of the classic

FRW models are recovered if b 5 0 is made [7]:
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f } t1/2, r } t22, u } t21/2, S 5 const.

s } t23/2, n } t23/2

It is interesting to mention that the model presented here may significantly
alter the predictions that the classic FRW makes on the abundance of elements.
Such a result possibly limits the values that could be taken by the b parameter.

Finally and according to Prof. Alfonso-Faus’s works ([25]), the desire
is to show that the model exposed verifies, in addition to general covariance
principle (25), the principles of Lorentz invariance, Mach, and Equivalence.

The Lorentz invariance is verified if the relationship v/c remains constant
with time

v
c

5 const.

but this relationship is always constant since in our model all the speeds vary
following the law v } t21/2.

Mach’s principle is verified if the following equality is fulfilled

GMm
f (t)

5 mc2

this establishes the equality between the energy of a particle and the gravita-
tional potential energy of the same. It can be proved without difficulty that
even b is verified.

Finally, the Equivalence principle is verified if the following relationship

GM
f 2(t)

t
c

5 const.

is maintained constant. It can be proven without difficulty that it is verified
even for all values of b.

With regard to Planck’s system ([26]), we now shows the following
behavior:

lp 5 1G"

c3 2
1/2

' f (t)

mp 5 1c"

G2
1/2

' f (t)

tp 5 1G"

c5 2
1/2

' t
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with this behavior it is seen that this model does not have the designated
problem of Planck since the radius of the Universe f (t) in the Planck’s era
coincides with the length of Planck

f (tp) ' lp

while energy density in the Planck’s era coincides with energy density of
Planck

r(tp) ' rp ' t22

where rp 5 mpc2/l3
p.

4.2. Model with Matter Predominance g 5 1/2 and v 5 0

G } A
2

3(12b)
v k

222
4

3(12b)
g t

221
4

3(12b)

c } A
1

3(12b)
v k

22
3(12b)
g t

211
2

3(12b)

" } A
1

(12b)
v k

22b
(12b)
g t

11b
12b

k21/4
B a } A

24
(12b)
v k

216b
12b
g t

216b
b21

e2e21
0 } A

4
3(12b)
n k

12
8

3(12b)
g t

216b
3(12b)

mi } A
1

3(12b)
v k

22
2

3(12b)
g t

2
3(12b)

L } A
2

2
3(12b)

v k
4

3(12b)
g t

2
4

3(12b)

With these results it is seen that exactly the same occurs as in the case of
radiation predominance, i.e., that is, the relationship G/c2 (general covariance)
remains constant and the fine structure constant also remains constant in this
case. It is easily proven that in the same way as in the case of radiation
predominance this model also fulfills the principles studied previously: Equiv-
alence; Mach; and Lorentz invariance.

If b 5 0 is made:

G } t
2

2
3, c } t21/3, " } t, a } t22

e } t
1
3, mi } t

2
3, L } t24/3

is obtained: c } t21/3 is also obtained by Barrow [15] but not by Troiskii
[14]. We observe that with b 5 0 this time the charge of the electron behaves
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as e2e0
21 } t

2
3 if e0 5 const. is considered, then e } t

1
3 while m0 } t2/3. The

radiation constant also varies a } t22. The masses continue varying in propor-

tion to time while the gravitation “constant” varying as G } t
2

2
3. Finally it

should be pointed out that the Planck’s constant varies direct proportion to
time " } t.

The rest of the quantities presents the following behavior:

r } k2
gt22

rm } A
22

3(12b)
v k

21
4

3(12b)
g t

24
3(12b)

f } A
1

(12b)
v k

2
2

3(12b)
g t

2
3(12b)

j } k2
gt21

The law of temperatures obtained is:

kBu } A
1

(12b)
v k

22b
(12b)
g t

2b
(12b)

as the temperature in the matter predominance era should be kept constant,
the only possibility is to make b 5 0, i.e., during this era there is no creation
of matter (in the case of not making b 5 0 our Universe would be heated).
With b 5 0, it is proven that energies are preserved

E 5 "v 5 const. E 5 mc2 5 const.

since E 5 kBu 5 const. This model with b 5 0 is very similar to a FRW
with matter predominance though here the problem of the horizon no exits
since ct 5 f,

r } t22 rm } t24/3 f } t2/3

With respect to the obtained result with the parameter q 5 1/2, it might seem
be in contradiction with the current observed values (acceleration of the
Universe) which are based on the constancy of the luminosity of stars.
However, in our case the luminosity varies in inverse proportion to time

L }
GMmpc

sT
' t21

where mp represents the proton mass and sT is the cross-section, i.e., the
luminosity decreases with time. Sandage has calculated the effect of the
evolution on the luminosity of galaxies.



Cosmological Models with Variable “Constants” 1681

L8

L
5 1029/year

In our case

L8

L
5 t21

and for an age of the Universe about 1010 years does not disagree of our result.
Before ending a reference should be made to Petit’s work [10].
This author, in a very different context, gauge invariance, has studied

the variation of the physical constant, being one of the first to consider the
possible variation of the constant c [27]. His results coincide with ours for
the case: (g 5 1/2, v 5 0, b 5 0), i.e., an universe topologically equivalent
to the classic FRW with matter predominance and without creation of matter.
However, Petit says to work with a universe that describes the radiation era,
said coincidence does not exist with our work. However, we believe that his
work is very correct in the development, but in reality, he is describing a
universe with matter predominance by using in all his work the mass density
(see equation number (32) in [10]). For this reason his model cannot verify
the law r } f 24. If it is assumed (in our opinion) that his model describes
a universe with matter predominance, it is found that all his results coincide
with ours for the case above described, i.e., (g 5 1/2, v 5 0, b 5 0), these are:

G } t
2

2
3, c } t21/3, " } t, a } t22,

e } t
1
3, mi } t

2
3, e0 5 const., m0 } t2/3

f } t2/3 rm } t24/3

Recently, P. Midy and Petit [28] have elaborate a “very interesting” 5D
new model where all the “constants” vary in the same way as here.

5. CONCLUSIONS

The behavior of the “constants” within two specific models has been
calculated. In the first of the cases, a universe with radiation predominance,
it has been seen that the mechanisms of matter creation are valid provided
that b , 1/4, since of the contrary our universe would be heated as it expands.
If we restrict ourselves to the case b 5 0 (noncreation of matter) the solutions
obtained are not discordant with those already obtained by other authors. In
this case, it is found that the radiation constant as well as the relationship e2e0

21

remain constant if b 5 0 while the rest of the “constants” vary independent of
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the value of b. The two models studied here verify the general covariance
principles G/c2, Lorentz invariance v/c 5 const., Mach, and Equivalence for
all value of b. It is also found that the fine structure constant a remains
constant since the “constants” that define it vary in such a way that the
relationship remains constant. To emphasize, furthermore, that with the varia-
tion of the constant of radiation a the relationship r 5 au4 is recovered for
energy density. Finally, it should be commented that this model upon varying
the speed of the light does not have the problem of the horizon, being verified
the equality ct 5 f. It has also been possible to explain the so-called Planck’s
problem as well as the entropy problem.

With respect to the model with matter predominance, it is seen that in
it mechanisms of creation of matter cannot be considered, since if these are
taken in account the temperature would increase instead of remaining constant
while the universe expanded. With b 5 0, it is proven that energies are
preserved. In this case, the same as in the previous, we see that the relationship
G/c2 remains constant the same as the fine structure constant a. But if g Þ
1/2, these relationships do not stay constant. Finally it should emphasized
that in this case, contrary to what happened in the model of radiation predomi-
nance, with b 5 0 the “constants” a and e vary.

6. APPENDIX. BEHAVIOR OF THE ELECTROMAGNETIC
QUANTITIES

Following Prof. Alfonso-Faus’s observations we explore other possibilit-
ies from the results we have obtained for the product e2e0

21, it showed the
following behavior depending on the era it was calculated:

e2e21
0 5 5const. if v 5

1
3

t
2
3 if v 5 0

It is studied below with more detail for the different possibilities we have.

6.1. Case e2e0
21 in the Radiation Era v 5

1
3

In this case the relationship we obtained was:

e2e0
21 5 const.

from which it may be obtained that:

1. e2 5 e0 5 const. Case envisaged above.
2. e2 5 e0 being able to vary in any way.
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3. e2 5 e0 imposing the condition e0 5 m0 5 1–c . This condition is
derived from the THem formalism, devised by Lightman and Lee
(see [29]) and may be used to implement the Einstein’s Equivalence
principle as presented by Will (see [30]).

From this relationship we obtain furthermore that:

e2 5 e0 5 m0 5
1
c

we recall that in this case the speed of the light varies as: c } t21/2.

e2 5 e0 5 m0 } t1/2

being verified furthermore

e2 5 " } t1/2

With respect to electrical and magnetic field they behave as:

E } t25/4 and H } t25/4

H 5 E

the electromagnetic energy density behaved as

uEM 5 e0 E 2 1 m0 H 2 } t22

this result is coherent with the obtained for the radiation energy density
r 5 au4 } t22. With these results the fine structure constant continuous
being constant and the Bohr radius behaved as the radius of the Universe
since the imposition of the condition e0 5 m0 5 1–c does not alter the
behavior of the constant ".

RB 5
"2e0

e2m
} t1/2 ' f (t)

In regard to the result e0 } t1/2 it is observed that e0 } f (t). This result
was already explained by Møller (see [31]) and afterwards Landau and Lifshitz
(see [32]) reached the same conclusion. That is also Sumners’ remark (see
[13]), since he sets to the result e0 5 m0 } t1/2 as well this coincidence, as
we will see, occurs only in the case of radiation.

6.2. Case e2e0
21 in the Matter Era v 5 0

In this case, the relationship that we had obtained was:

e2e0
21 } t2/3.

from this relationship it is deduced that:



1684 Belinchón

1. e0 5 const. and e } t1/3. Case envisaged in the work.
2. e 5 const. and e0

21 } t2/3. } m0 } t4/3. It is remembered that in this
case c } t21/3. Concerning to the quantities E and H they show the
next behavior:

E } t22/3 and H } t25/3

while the electromagnetic energy density behaved as:

uEM 5 e0 E 2 1 m0 H 2 } t22

in this case the constant a also continues being constant.
3. Imposing the condition e0 5 m0 5 1–c (THem formalism) the following

results are obtained:

e0 5 m0 5
1
c

/ e2e0
21 } t2/3

we recall that in this case c } t21/3. Then:

e0 5 m0 } t1/3

(the Sumner’s results (see [13]) do not coincide with ours in this
case) while

e2 5 " } t

i.e., e } t1/2. Concerning to the quantities E and H show the following
behavior:

E } t27/6 and H } t27/6

H 5 E

while the Electromagnetic energy density behaved as

uEM 5 e0 E 2 1 m0 H 2 } t22

In this case, the constant a also continues being constant in spite
of the fact that " } t, i.e., our new results, do not alter at all the
value of " already obtained and we verify the THem formalism. In
this case, the Bohr radius varies like the scale factor f, the radius
of the Universe

RB 5
"2e0

e2m
} t2/3 ' f (t)

while Bohr total energy is maintained constant (result that does not
surprise us since in the case of matter predominance (all) energies
are preserved while the moments are not)
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ETB 5
me4

e2
0"

2 5 const.
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special thank to Prof. M. Castañs for his helpful suggestions.

REFERENCES

1. J. A. Belinchón (2000). Gen. Rel. Grav. 32, N8.
2. J. A. S. Lima, A. S. M. Germano, and L. R. W. Abramo, gr-qc/9511006.
3. K. Desikan (1997). Gen. Rel. Grav. 29, 435.
4. I. Prigogine, J. Geheniau, E. Gunzig, and P. Nardone (1989). Gen. Rel. Grav. 21, 767.
5. S. Weinberg (1971). Astro. Jour. 168, 175; (1972). Gravitation and Cosmology. (Wiley,

N.Y.), pp. 593–594; G. L. Murphy (1973). Phys. Rev. D12, 4231; T. Padmanabhan and S.
M. Chitre (1987). Phys. Lett. A 120, 433; J. D. Barrow (1988). Nucl. Phys. B310, 743.

6. A. I. Arbab (1997). Gen. Rel. Grav. 29, 61; T. Singh, A. Beesham, and W. S. Mbokazi
(1998). Gen. Rel. Grav. 30, 573.

7. J. A. Belinchón (Physics/9811016).
8. G. I. Barenblatt (1996). Scaling, self-similarity and intermediate asymptotics. Cambridge

Texts in Applied Mathematics N 14 (Cambridge University Press; J. Palacios (1964).
Dimensional Analysis. (Macmillan, London); R. Kurth (1972). Dimensional Analysis and
Group Theory in Astrophysics (Pergamon).

9. Z. Golda, H. Heller, and M. Szydlowski (1983). Astrophys. Spa. Sci. 90, 313.
10. J.-P. Petit (1995). Astrophys. Spa. Sci. 226, 273.
11. P. P. Avelino and J. A. P. Martins, astro-ph/9906117.
12. J. K. Webb, et al., astro-ph/9803165.
13. W. Q. Sumner (1994). Astrophys. Jour. 429, 491.
14. Troitskii (1987). Astr. Spa. Sci. 139, 389.
15. J. D. Barrow, astro-ph/9811022.
16. G. M. Blake (1977). M.N.R.A.S. 181, 47.
17. D. T. Pegg (1977). Nature 267, 408.
18. P. Wesson (1978). Cosmology and Geophysics. (A. Hilger, Bristol, U.K.), Chap. 4.
19. W. Baum and R. Florentin-Nielsen (1976). Astro. Jour. 209, 319.
20. J-E. Solhein et al. (1976). Astro. Jour. 209, 330.
21. G. Gamow (1967). Phys. Rev. Lett. 19, 759; F. J. Dyson (1967). Phys. Rev. Lett. 19, 1291;

J. N. Bahcall and M. Schmidt (1967). Phys. Rev. Lett. 19, 1294; P. C. W. Davies (1972).
J. Phys. A: Gen. Phys. 5, 1296; J. D. Bekenstein (1982). Phys. Rev. D25, 1527; L. L.
Cowie and A. Songalia (1995). Astro. Jour. 453, 596.

22. Hoyle and Narlikar (1971). Nature 233, 41; (1972). M.N.R.A.S. 155, 305.
23. V. Canuto et al. (1977). Phys. Rev. D16, 1643.
24. V. N. Mansfield and S. Malin (1976). Astro. Jour. 209, 335.
25. A. Alfonso-Faus (1999). Personal communication, submitted to IJMPD.
26. D. H. Coule, gr-qc/9811058.



1686 Belinchón

27. J. P. Petit (1988). Mod. Phys. Lett. A3, 1527; J. P. Petit (1988). Mod. Phys. Lett. A3, 1733;
J. P. Petit (1989). Mod. Phys. Lett. A4, 2201; J. P. Petit (1995). Astr. Spa. Sci. 226, 273;
also see his web site: http://www.jp-petit.com

28. P. Midy and J.-P. Petit, gr-qc/9909086.
29. A. P. Lightman and D. L. Lee (1973). Phys. Rev. D 8, 364.
30. C. M. Will (1993). Theory and Experiment in Gravitational Physics. (Cambridge University

Press), p. 45–66.
31. C. Møller (1952). The Theory of Relativity. (Oxford, Clarendom).
32. Landau and Lifshitz (1975). The Classical Theory of Fields. (Oxford, Clarendom).


